(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

a__f(f(a)) → c(f(g(f(a))))
mark(f(X)) → a__f(mark(X))
mark(a) → a
mark(c(X)) → c(X)
mark(g(X)) → g(mark(X))
a__f(X) → f(X)

Rewrite Strategy: FULL

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

a__f(f(a)) → c(f(g(f(a))))
mark(f(X)) → a__f(mark(X))
mark(a) → a
mark(c(X)) → c(X)
mark(g(X)) → g(mark(X))
a__f(X) → f(X)

S is empty.
Rewrite Strategy: FULL

(3) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
c/0

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

a__f(f(a)) → c
mark(f(X)) → a__f(mark(X))
mark(a) → a
mark(c) → c
mark(g(X)) → g(mark(X))
a__f(X) → f(X)

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
a__f(f(a)) → c
mark(f(X)) → a__f(mark(X))
mark(a) → a
mark(c) → c
mark(g(X)) → g(mark(X))
a__f(X) → f(X)

Types:
a__f :: a:f:c:g → a:f:c:g
f :: a:f:c:g → a:f:c:g
a :: a:f:c:g
c :: a:f:c:g
mark :: a:f:c:g → a:f:c:g
g :: a:f:c:g → a:f:c:g
hole_a:f:c:g1_0 :: a:f:c:g
gen_a:f:c:g2_0 :: Nat → a:f:c:g

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
mark

(8) Obligation:

TRS:
Rules:
a__f(f(a)) → c
mark(f(X)) → a__f(mark(X))
mark(a) → a
mark(c) → c
mark(g(X)) → g(mark(X))
a__f(X) → f(X)

Types:
a__f :: a:f:c:g → a:f:c:g
f :: a:f:c:g → a:f:c:g
a :: a:f:c:g
c :: a:f:c:g
mark :: a:f:c:g → a:f:c:g
g :: a:f:c:g → a:f:c:g
hole_a:f:c:g1_0 :: a:f:c:g
gen_a:f:c:g2_0 :: Nat → a:f:c:g

Generator Equations:
gen_a:f:c:g2_0(0) ⇔ a
gen_a:f:c:g2_0(+(x, 1)) ⇔ f(gen_a:f:c:g2_0(x))

The following defined symbols remain to be analysed:
mark

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
mark(gen_a:f:c:g2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

Induction Base:
mark(gen_a:f:c:g2_0(+(1, 0)))

Induction Step:
mark(gen_a:f:c:g2_0(+(1, +(n4_0, 1)))) →RΩ(1)
a__f(mark(gen_a:f:c:g2_0(+(1, n4_0)))) →IH
a__f(*3_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
a__f(f(a)) → c
mark(f(X)) → a__f(mark(X))
mark(a) → a
mark(c) → c
mark(g(X)) → g(mark(X))
a__f(X) → f(X)

Types:
a__f :: a:f:c:g → a:f:c:g
f :: a:f:c:g → a:f:c:g
a :: a:f:c:g
c :: a:f:c:g
mark :: a:f:c:g → a:f:c:g
g :: a:f:c:g → a:f:c:g
hole_a:f:c:g1_0 :: a:f:c:g
gen_a:f:c:g2_0 :: Nat → a:f:c:g

Lemmas:
mark(gen_a:f:c:g2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

Generator Equations:
gen_a:f:c:g2_0(0) ⇔ a
gen_a:f:c:g2_0(+(x, 1)) ⇔ f(gen_a:f:c:g2_0(x))

No more defined symbols left to analyse.

(12) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_a:f:c:g2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

(13) BOUNDS(n^1, INF)

(14) Obligation:

TRS:
Rules:
a__f(f(a)) → c
mark(f(X)) → a__f(mark(X))
mark(a) → a
mark(c) → c
mark(g(X)) → g(mark(X))
a__f(X) → f(X)

Types:
a__f :: a:f:c:g → a:f:c:g
f :: a:f:c:g → a:f:c:g
a :: a:f:c:g
c :: a:f:c:g
mark :: a:f:c:g → a:f:c:g
g :: a:f:c:g → a:f:c:g
hole_a:f:c:g1_0 :: a:f:c:g
gen_a:f:c:g2_0 :: Nat → a:f:c:g

Lemmas:
mark(gen_a:f:c:g2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

Generator Equations:
gen_a:f:c:g2_0(0) ⇔ a
gen_a:f:c:g2_0(+(x, 1)) ⇔ f(gen_a:f:c:g2_0(x))

No more defined symbols left to analyse.

(15) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_a:f:c:g2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

(16) BOUNDS(n^1, INF)